物联网app开发 PINN求解瞬态热传导问题
诈骗DeepXDE求解二维瞬态热传导方程物联网app开发。
DeepXDE是一个较为完善的PINN库,其封装了多半PINN建模时所需要编写的代码,不错使用刻下游行的AI框架(如pytorch、TensorFlow、PaddlePaddle、Jax等),编写的代码相比简陋易懂。
案例筹谋遵守如图所示。
图片物联网app开发
1 问题形色二维瞬态传热方程:
案例中,
筹谋模子及限制条目如下图所示。
图片
筹谋区域为正方形,边长为2 m,各限制条目划分为:
左侧限制:运行条目:
import deepxde as ddeimport matplotlib.pyplot as pltimport numpy as npfrom deepxde.backend import torch2.2 指定筹谋区域
geom = dde.geometry.Rectangle([-1,-1],[1,1])timedomain = dde.geometry.TimeDomain(0,10)geomtime = dde.geometry.GeometryXTime(geom,timedomain)2.3 界说PDE方程
alpha = 0.5def pde(x,y): dy_t = dde.grad.jacobian(y,x,i=0,j=2) dy_xx = dde.grad.hessian(y,x,i=0,j=0) dy_yy = dde.grad.hessian(y,x,i=1,j=1) return dy_t - alpha * (dy_xx + dy_yy)
函数pde的参数中,第一个参数x是一个具有三个重量的向量,第一个重量x[:,0]为x坐标,第二个重量x[:,1]为y坐标,第三个重量x[:,2]为t坐标。参数y为齐集输出。
红球冷码统计:双色球第2024078期开出红球奖号分别为:05、09、14、21、22、26,在最近300期开奖中,各号码出现之后其下期出现最少的5个红球分别为:
红球冷热分析:上期开出1个冷码红球:26,奖号冷热比为1:5,物联网app开发本期参考冷热比4:2,关注冷码15、16、23、31。
2.4 界说限制筹谋域中包含4个几何限制。案例中,上侧与下侧为Neumann限制,左侧与右侧为dIrichlet限制,这里径直为其赋值。
# 上限制,y=1def boundary_t(x, on_boundary): return on_boundary and np.isclose(x[1], 1)# 下限制,y=-1def boundary_b(x, on_boundary): return on_boundary and np.isclose(x[1], -1)# 左限制,x=-1def boundary_l(x, on_boundary): return on_boundary and np.isclose(x[0], -1)# 右限制,x=1def boundary_r(x, on_boundary): return on_boundary and np.isclose(x[0], 1)bc_t = dde.icbc.NeumannBC(geomtime, lambda x:0, boundary_t)bc_b = dde.icbc.NeumannBC(geomtime, lambda x:20, boundary_b)bc_l = dde.icbc.DirichletBC(geomtime, lambda x:30, boundary_l)bc_r = dde.icbc.DirichletBC(geomtime, lambda x:50, boundary_r)2.6 界说运行条目
运行值指定为0。
def init_func(x): return 0ic = dde.icbc.IC(geomtime,init_func,lambda _,on_initial:on_initial,)2.7 构造齐集
这里选拔6层全联络神经齐集:输入层3个神经元;4个掩盖层,每层50个神经元;输出层1个神经元。激活函数使用tanh,运行化选拔Glorot uniform。
data = dde.data.TimePDE( geomtime, pde, [bc_l,bc_r,bc_b,bc_t,ic], num_domain=8000, num_boundary=320, num_initial=800, num_test=8000, )layer_size = [3] + [50] * 4 + [1]activation = "tanh"initializer = "Glorot uniform"net = dde.nn.FNN(layer_size, activation, initializer)model = dde.Model(data, net)model.compile("adam", lr=0.001)2.8 模子磨真金不怕火
选拔底下的代码磨真金不怕火10000步,并暴露耗损函数残差。磨真金不怕火轮次不错相宜加多,比如不错磨真金不怕火30000步以进一步镌汰耗损。
losshistory,train_state = model.train(iterations=10000,display_every=1000)dde.saveplot(losshistory, train_state, issave=True, isplot=True)3 筹谋遵守
诈骗底下代码输出温度随时代变化动画。
import numpy as npfrom matplotlib.animation import FuncAnimationimport matplotlib as mplimport os# x,y标的闹翻200个节点x1 = np.linspace(-1,1,num=200,endpoint=True).flatten()y1 = np.linspace(-1,1,num=200,endpoint=True).flatten()xx1,yy1 = np.meshgrid(x1,y1)x = xx1.flatten()y = yy1.flatten()# 时代上取20个时代步,时代步长1/20=0.05sNt = 20dt = 1/Ntfor n in range(0, Nt+1): t = n * dt t_list = t*np.ones((len(x), 1)) x_pred = np.concatenate([x[:, None], y[:, None], t_list], axis=1) y_pred = model.predict(x_pred) y_p = y_pred.flatten() data_n = np.concatenate([x_pred, y_pred], axis=1) if n == 0: data = data_n[:, :, None] else: data = np.concatenate([data, data_n[:, :, None]], axis=2)print(x_pred.shape, y_pred.shape)print(data.shape, data_n.shape)# 创建图片保存旅途work_path = os.path.join('2DtransientRectTC',)isCreated = os.path.exists(work_path)if not isCreated: os.makedirs(work_path)print("保存旅途: " + work_path)# 赢得y的最大值和最小值y_min = data.min(axis=(0,2,))[3]y_max = data.max(axis=(0,2,))[3]fig = plt.figure(100, figsize=(10, 10))def anim_update(t_id): plt.clf() x1_t, x2_t, y_p_t = data[:, 0:1, t_id], data[:, 1:2, t_id], data[:, 3:4, t_id] x1_t, x2_t, y_p_t = x1_t.flatten(), x2_t.flatten(), y_p_t.flatten() print(t_id, x1_t.shape, x1_t.shape, y_p_t.shape) plt.subplot(1,1,1) plt.tricontourf(x1_t, x2_t, y_p_t, levels=160, cmap="coolwarm") cb0 = plt.colorbar(mpl.cm.ScalarMappable(norm=mpl.colors.Normalize(vmin=y_min, vmax=y_max), cmap="coolwarm" ),ax = plt.gca()) plt.xlabel('$x (m)$') plt.ylabel('$y (m)$') plt.title("Temperature field at t = " + str(round(t_id * dt,2)) + " s.", fontsize = 12) plt.savefig(work_path + '//' + 'animation_' + str(t_id) + '.png')print("data.shape[2] = ", data.shape[2])# 创建动画anim =FuncAnimation(fig, anim_update, frames=np.arange(0, data.shape[2]).astype(np.int64), interval=200)anim.save(work_path + "//" + "animation-" + str(Nt+1) + ".gif", writer="pillow",dpi=300)
温度变化如图所示。
图片
本案例使用的后端框架为Pytorch。参考费力:https://aistudio.baidu.com/projectdetail/5489960
(完)
图片
本站仅提供存储管事,悉数实质均由用户发布,如发现存害或侵权实质,请点击举报。